


 Early phase study design will depend on a multitude of 
factors (e.g.; disease, study population, drug, regulatory, 
etc…)

 For example, a new delivery method for an old drug may 
require a bioequivalence study (cmax and auc)

 A new drug (or at least a new drug for the study 
population) will go through some sort of dose 
finding/ranging



 Many early phase studies employ Bayesian statistical 
methods

 A lot of folks have not been properly trained in Bayesian 
methods



 There are probably introductory 
statistical courses that do not 
cover Bayesian methods (or at 
least there were intro courses 
that did not cover this topic)

 Yet Bayesian methods grow 
ever more common, especially 
in early phase studies

 There can be hesitancy to 
implement these methods 
because they appear ‘new’ or 
‘complicated’



 For this talk, we will walk through:

 A real-world example of Bayesian thinking

 Some “simple” exercises that could be used in early phase studies:
▪ An example of a frequentist confidence interval
▪ An example of a Bayesian credible interval
▪ An example of a Bayesian posterior probability against a threshold

 A few additional applications used in early phase trials



 Bayesian inference is the 
reallocation of credibility 
across possibilities

 Suppose we were to step 
outside one morning to find 
that the sidewalk is wet…

 Why is the sidewalk wet?



 …it has recently rained?

…someone watered the 
grounds nearby?

…a new spring had erupted 
from underground?

…a sewage pipe has broken?

…a passerby spilled a drink?



 If all we know up to this point 
is that the sidewalk is wet, 
then all of the previous 
possibilities will have some 
level of credibility based on 
our previous knowledge

 However, continuing on our 
journey outside, we may 
collect additional 
observations…



 …the sidewalk is wet for as 
far as we can see

…the trees are wet as well

…the cars are wet, too

We may then re-allocate 
credibility to the hypothetical 
cause of rain



 …the wetness is localized to 
a small area

…there is an empty drink cup 
nearby

We may instead re-allocate 
credibility to the hypothetical 
cause of a spilled drink



 …Clark Griswold is nearby
…there is a house with an 

obscene amount of lights 
nearby
We may actually allocate 

credibility to the possibility of 
Cousin Eddie’s dirty work
 This re-allocation of credibility 

from areas of prior belief to 
new areas based on 
accumulating data is the 
essence of Bayesian 
inference



 Suppose that we collect treatment-emergent adverse 
event (TEAE) data

 Each of 30 subjects will either have at least one TEAE or 
they will have zero TEAEs

 Suppose that 10 out of the 30 subjects observe at least 
one TEAE



 We can use a formula (and a normal 
approximation):

̂݌ േ ଵିఈଶݖ
̂݌ ∗ 1 െ ̂݌

݊

ൌ 0.33 േ 1.96
0.33 ∗ 1 െ 0.33

30
ൌ ሺ0.16, 0.50ሻ

 Interpretation: If we repeated this 
experiment 100 times, we would expect 
95% of the confidence intervals to contain 
the true value of the probability of a TEAE



 These are beta distributions for various values of the 
distributions two parameters, alpha and beta

 Alpha (sometimes called shape1) can loosely be 
interpreted as “the number of events that occurred”

 Beta (sometimes called shape2) can be loosely 
interpreted as “the number of trials in which an event did 
not occur”

 Therefore, every time we observe an event, we add 1 to 
alpha and every time we have a subject that does not 
observe the event, we add 1 to beta

 To get any point along any of these lines, use “dbeta(x, 
shape1=alpha, shape2=beta)” in R

 For example: dbeta(0.5, shape1=2, shape2=2) will give 
the maximum point on the purple line to the left.



 We will need to pick our prior 
belief of the probability of a 
TEAE

 One potential choice (that may 
actually seem pretty 
counterintuitive, but can actually 
work out nicely) is to choose:
 Alpha = 1
 Beta = 1

 So our prior distribution is a 
BETA(1, 1)



 Alpha = 1 + 0

 Beta = 1 + 1

 So our posterior distribution is 
now a BETA(1, 2)



 Alpha = 1 + 0 + 0

 Beta = 1 + 1 + 1

 Our posterior distribution is 
now BETA(1, 3)



 Alpha = 1 + 10

 Beta = 1 + 20

 Our posterior distribution is 
now BETA(11, 21)



 One way to obtain a 95% credible interval would be 
to take the 2.5% and 97.5% percentiles of the 
BETA(11, 21) distribution:

ሺ0.19, 0.51ሻ

 The above is done in R by the following two 
commands:
 qbeta(0.025, 11, 21)
 qbeta(0.975, 11, 21)

 This is pretty close to the 95% confidence interval:

ሺ0.16, 0.5ሻ

 The interpretation is: 95% of the posterior probability 
of a TEAE lies between 0.19 and 0.51.



 If there were some special threshold, we 
could speak to the probability of being 
above or below the threshold

 For example, if 40% were a specific 
threshold for our disease of interest, both 
the frequentist confidence interval and the 
Bayesian credible interval contain 0.4

 However, it is quite natural, in the Bayesian 
framework, to say “75% of the posterior 
probability lies below 0.4”

 The above is accomplished with the R 
command:
 pbeta(0.4, 11, 21)





















 Doing Bayesian Data Analysis (2nd Edition) by John 
Kruschke


