DEVELOPING A STATISTICAL PLAN FOR "SAFETY"

RENEE MARTIN

MEDICAL UNIVERSITY OF SOUTH CAROLINA

STUDY DOCUMENTS THAT LOOK AT SAFETY

- Safety Monitoring Plan
 - Formal plan pre-specifying what interim data are to be monitored, by who, and how it will be monitored
 - Considers potential risks and benefits for participants
 - Collection and reporting of AEs, SAEs, Unanticipated Problems, etc.
 - Considers protection against study risks, i.e. high risk items
 - Specifies what data will be monitored (endpoints, Aes, labs, etc.)
 - Specifies who will be monitoring what data (site monitor, DSMB, centralized monitoring)
 - Specifies timing of data monitoring and frequency of reviews

STUDY DOCUMENTS THAT LOOK AT SAFETY

- Statistical Analysis Plan
 - Formal plan pre-specifying all analyses to be conducted for a study
 - Specifies interim data monitoring for the DSMB
 - Specifies timing of all interim analyses and frequency of reviews
 - Specifies criteria that will guide early termination (i.e. stopping rules)
 - Specifies expected adverse event or safety event rates

SPECIFIC AIMS

Clinical Equipoise??

- I. To demonstrate that MYDRUG is better than control at improving outcome
- 2. To demonstrate that MYDRUG is safe

Hard to prove, especially with small sample...

WHAT IS WRONG WITH THESE SPECIFIC AIMS?

- Hard to prove drug is "safe"
 - If we have insufficient evidence to reject the null hypothesis of "my drug is safe" then this does not prove that it is safe
 - "No safety concerns were identified."

SAFETY HYPOTHESES

- Specific Aims/Objectives need to state the outcome/endpoint (what you are measuring, be specific)
- "Safety" is not an outcome Focus "identify harms", not "prove safety".
- Most trials are not designed to detect differences in safety outcomes between groups because sample size based on efficacy
- Commonly, not enough power to detect rare adverse events

SAFETY THROUGH THE LIFE CYCLE OF THE DRUG DEVELOPMENT

- Assessment of safety is ongoing, not just a Phase I or Phase II trial objective
- Phase IV trials/ post-marketing surveillance monitor safety concerns
- Sometimes safety concerns are not detected until drug comes to market

Phases of a Clinical Trial

SAFETY AIM: IDENTIFY IF INTERVENTION HARMFUL

- I. Anticipate potential harms
- 2. Define a Primary Safety Outcome (composite of several potential events if appropriate)
- 3. Determine Expected Rates (drug/control group) and what is a Clinically worrisome increase
- 4. What other statistical questions do I need to answer?

WHAT ARE THE HARMS??

HOW MUCH DO WE ALREADY KNOW? (DIG DEEP)

- New medicinal product or a marketed product
- Early, middle, or late stage trial?
- What is target/Mechanism of Action?

Based on this information, are there events that we can anticipate or expect?

KNOW WHAT IS EXPECTED?

Be mindful of what is expected due to drug/device versus what is expected with the disease that you are studying

KNOW WHAT IS EXPECTED WITH THE CONTROL GROUP

- If you expect an event based on mechanism of action, but have no idea what rate then.....
- Use epidemiological or natural history data to determine anticipated rate in the control group
- Control group from another study of similar patients

DEFINING THE PRIMARY SAFETY OUTCOME

ADVERSE EVENT REPORTS

- "any untoward medical occurrence associated with the use of a drug in humans, whether or not considered drug related"
- Collection of AEs is passive,
 - What unusual symptoms or medical problems have you experienced since last visit....

ADVERSE EVENTS

- Record all events after randomization regardless of relatedness
- Centrally coded (MedDRA)
- Coded AEs can be grouped by
 - Body System(SOC) → Preferred Term (PT)
- Cumulative occurrence rate by treatment group reported to DSMB

AES BY SEVERITY

Adverse Events by Body System, Preferred Term, and Severity

			Α			В			С							
	MedDRA	Severe	Moderate	Mild	Severe	Moderate	Mild	Severe	Moderate	Mild	Total	Total	Total	A % of	B % of	C % of
Body System	Preferred Term		2			2			2		A	В	C	Subj	Subj	Subj
Blood and lymphatic system disorders	Anaemia	0	1	1	0	0	3	0	0	0	2	3	0	-	4.7%	0
	Thrombo- cytopenia	0	0	1	0	1	0	0	0	0	1	1	0	1.5%	1.6%	0
Cardiac disorders	Atrial fibrillation	0	0	0	0	0	0	0	1	0	0	0	1	0	0	1.6%
	Atrial flutter	0	1	0	0	0	0	0	0	0	1	0	0	1.5%	0	0
Ear and Labyrinth Disorders	Tinnitus	0	0	0	0	1	0	0	0	1	0	1	1	0	1.6%	1.6%
	Vertigo	0	0	0	0	0	0	0	1	0	0	0	1	0	0	1.6%
Endocrine disorders	Hypothyroidism	0	2	0	0	0	0	0	0	0	2	0	0	2.9%	0	0
Gastrointestinal disorders	Abdominal discomfort	0	0	0	0	0	0	0	0	1	0	0	1	0	0	1.6%
	Abdominal pain	0	0	0	0	0	1	0	0	0	0	1	0	0	1.6%	0
	Constipation	0	0	1	0	0	3	0	0	5	1	3	5	1.5%	4.7%	7.9%
	Diarrhoea	0	1	6	0	1	2	0	0	3	7	3	3	10%	4.7%	4.8%
	Dvspepsia	0	0	1	0	0	0	0	0	0	1	0	0	1.5%	0	0

ISSUES WITH MEDDRA CODES

- A single event may get reported as individual symptoms and signs (multiple AEs)
- Body System—too broad to identify a safety signal
- Preferred Term –similar events get grouped into different PT and SOC
 - "pulmonary edema" → Respiratory SOC
 - "heart failure" → Cardiovascular SOC
- Hard to detect safety issues!

"GROUP" SAFETY EVENTS

- Example: pneumonia, bronchopneumonia, pneumocytosis, respiratory illness, respiratory disease
- Be consistent with data collection
 - Make sure to consistently report the diagnosis (not signs and symptoms)
- Use Composites
 - Group major safety events so that the signal is not diluted.
 - Group efficacy and safety outcomes to look at the global effect of the treatment
- Group "near" terms

PROSPECTIVELY COLLECT

- If you specifically ask about it, you will get better ascertainment then recall
- Only possible for anticipated or expected events (not rare, unexpected)
- "Cleaner" data
- A well-defined prospective definition is better than a central adjudication team
 - Only as good as what gets initially reported.

WHAT DO WE EXPECT AND WHAT IS TOO MUCH??

HOW MUCH CAN THE RATE INCREASE?

- Given expected rate, what increase in the event rate would be medically concerning?
- Relative risk of 3 or more or some other criteria based on the statistical distribution??
- Use this to define your safety analyses.

STOPPING RULES

- Decide if formal stopping rules for safety are needed
 - Expected AE (3% sICH), know increase that would be concerning (6% sICH)
- State in advance
- Rules are guidelines: stopping is not mandatory
- Monitoring requires a combination of statistical and clinical insights
- Stop if interim data suggest trial poses an unreasonable risk to participants

PROBABILITY OF OBSERVING THIS MANY EVENTS GIVEN TRUE RATE (BINOMIAL CDF)

Treatment Group	Subgroup Age	X Number of Subjects with sICH	N	% of subjects	Probability of observing X or more given true rate is 3%	Probability of observing X or more given true rate is 5%
Α	<60 Years	1	15	7%	0.37	0.54
	>60 Years	1	35	3%	0.66	0.83
	Total A	2	50	4%	0.44	0.72
В	<60 Years	2	11	18%	0.04	0.10
	>60 Years	3	40	8%	0.12	0.32
	Total B	5	51	10%	0.02	0.11

sICH=symptomatic intracranial hemorrhage

AES POTENTIALLY RELATED: MONITORED FOR TREND

SAFETY EVENT	TRT GROUP	EXPECTED EVENT RATE	# AT RISK	# EVENTS	RR	RR 95% CI	EVENT RATE 95% CI
NEUROLOGICAL	Α						
DETERIORATION WITHIN 48	В						
HOURS ¹	TOTAL	4%					

Expected Event rate: the rate observed in treated patients from pilot cohort studies.

at risk: the number of subjects who have passed the timepoint or had safety event

events: the number of subjects who have experienced the safety event

Event proportion: (# events)/(# at risk).

Observed time: the sum of the person-time available for each subject.

Event rate: (# events)/(observed time)

SANJAY MATANGE DECEMBER 3, 2012

HTTP://BLOGS.SAS.COM/CONTENT/GRAPHICALLYSPEAKING/2012/12/03/MOST-FREQUENT-AE-SORTED-BY-RELATIVE-RISK/

SAFETY CONCERN? VOLCANO PLOT

P-risk (Odds Ratio) Plot of Treatment Emergent Adverse Events at PT Level

:

STATISTICAL QUESTIONS

SAFETY ANALYSIS SAMPLE - "WHO"

- Include anyone who received the study drug, but only while they were on the drug (person-years or Risk Set).
- If didn't get the drug, then they can't be harmed by it. Don't use an Intent-to-Treat (ITT) sample.
- Cross-overs should analyze according to what they actually received.

SAMPLE SIZE – "HOW MANY"

Two group comparison?

 H_0 : treatment=control vs H_A : treatment≠control

One or Two sided test?

Reject null if treatment worse than control

But for rare events or a small increase in event rates, we may fail to reject the null hypothesis.

SAFETY ANALYSIS - "HOW"

- One or two sample test
- Confidence Intervals around effect size
- Frequency of Events (%)
 - Relative Risk (ratio) p_A/p_B
 - Absolute Risk Difference p_A-p_B
 - Odds Ratio $p_A/(1-p_A)/p_B/(1-p_B)$
- Hazard Ratio (time to event)
- Adjust for baseline covariates?
 - Logistic Regression
 - Log Binomial model
 - Cox PH

MULTIPLE "LOOKS"—"HOW OFTEN"

- Will increase the likelihood of finding a statistically significant difference even if none exists
- Repeated tests → increase Type I error

Group Sequential / Alpha-spending functions are statistical tools to protect

the type I error rate (primary outcome)

ADJUST FOR MULTIPLE COMPARISONS?

- Not trying to PROVE safety, just quantify risks, so multiplicity is less of a concern
- Worry about inflating the type I error rate (false positive rate), but not too much (uniform p-value=0.01)

UNANTICIPATED EVENTS – "WHY"

- Sentinel events unanticipated event resulting in death or serious physical or psychological injury to patient, not related to the natural course of the disease
- Any unanticipated or unexpected event??
 - May trigger a monitoring activity

WHY ARE HARMS FOUND LATE?

- Rare events
- Small sample size
- Exclude people likely to be harmed
- Use the wrong denominator
 - Persons at risk
 - Person time
 - Doses
 - ITT sample

SUMMARY

- Know what is expected with drug/control
- Pre-specify AEs of importance
- Group similar events/composites (collect unifo magnetic properties)
- Consider risk/benefit when defining stopping rules or safety criteria
- Be mindful of safety sample and multiple comparisons
- Remember that unexpected event(s) will prompt increased monitoring

QUESTIONS

REFERENCES

- Janet Wittes, PhD "Why are harms found late?" Biostatistics and FDA Regulation: Convergence of Science and Law, Cambridge MA, 20/May/2014
 - http://www.fdli.org/docs/biostatistics/wittes.pdf?sfvrsn=0
- Wittes et al. Clinical Trials 2007; 4: 218-234.)
- Wittes, Crowe, et al. Statistics in Biopharmaceutical Research: August 2015